International Federation of Digital Seismograph Networks

X4 (2022-2022): Guerrero Gap Active Source Experiment

Are you the operator of this network? Update this information.

FDSN Network Information

FDSN code X4 (2022-2022) Network name Guerrero Gap Active Source Experiment (Guerrero)
Start year 2022 Operated by
End year 2022 Deployment region -

A 47.5 day, combined 2D wide-angle seismic reflection/refraction and ultra-long offset multi-channel seismic (MCS) survey will be conducted onboard the R/V Marcus G. Langseth. This project includes six primary profiles along which both MCS and Ocean Bottom Seismometer (OBS) data will be acquired, and additional MCS profiles that extend seismic imaging over a larger extent of the margin. This study of the Guerrero Gap and neighboring segments will yield unique insights into two core questions: (1) What is the hydration state of the incoming, young sediment-starved Cocos oceanic plate at the Middle America subduction zone, and how does it vary along-strike and relate to changes in subduction zone behavior? MCS imaging and P and S- waves velocity models from OBS and streamer data, including full-waveform inversion as well as joint inversion of shots and earthquakes, will provide the first estimates of the amount and distribution of water in the incoming plate prior to subduction from the ridge axis to the trench axis and both in and outside of the Guerrero Gap, allowing us to examine the role of fluids in subduction zone processes and results will be compared the young but well-sedimented Cascadia and Nankai subducting plates, (2) How do geometrical and material properties of the subducting and overriding plates influence slip behavior along the megathrust fault? Controlled- source seismic data will bring new, high-resolution constraints on the architecture and properties of the upper 20-30 km of this subduction zone on parts of the megathrust that have different degrees of coupling and slip behavior. This will enable the testing of competing ideas for controls on slip behavior developed at other subduction zones, such as variations in pore-fluid pressure or fault zone heterogeneity. Addressing this question will require a synthesis of constraints on plate boundary properties from this project with results on slip behavior from an ongoing multi-year deployment of geodetic and seismic stations within the Guerrero Gap.

Citation Information

Digital Object Identifier (DOI) No DOI is registered for this network.
A Digital Object Identifier (DOI) is a standardized way of identifying electronic records, and can be used to automatically generate citation text. DOIs are recommended for all seismic networks. You can request or register a DOI for this network using the network update form.

Data Access

Data Availability
Loading data availability information...

FDSN Web Services provide a common data access API for seismic data.

Availability based on irisws-fedcatalog service.
Full fedcatalog information for this network

Stations in this Network